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Probabilities 

S. Bugajski t and Z. Motyka 

Institute of Physics, Silesian University, Katowice, Poland 2 

Received July 2, 1980 

A version of the Borel law of large numbers is found which remain.~ valid for 
nonclassical (Mackey-type) probability theories. Its relation to a frequency 
interpretation of quantum probabilities is discussed. 

1. INTRODUCTION 

Without entering into discussion about interpretations of probability, 
one could risk the claim that on the experimental level probabilities are 
always approximated by relative frequencies. So any form of probability 
theory becomes applicable to science only if it is able to express probabili- 
ties as limits of relative frequencies. The classical (Kolmogorov) probabil- 
ity theory meets this requirement, as it contains a collection of laws of 
large numbers (like the Borel law). There was nothing similar for the case 
of generalized (Mackey-type) probability theories based on structures 
weaker than Boolean algebras, except the standard quantum mechanics 
with its Borel-Finkelstein law. We fill this gap by demonstrating that some 
version of the classical Borel law holds in any Mackey-type probability 
theory, including the standard quantum mechanics, where it is equivalent 
to the Borel-Finkelstein law. 
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2. TWO V E R S I O N S  OF THE BOREL LAW 

Let [f~,@(f~), Ix] be a probability space, and f~, f2 .... a sequence of 
identically distributed and mutually independent random variables on it. 
The well-known theorem of Kolmogorov (Gnedenko, 1976) states that 

Ix n f k "  =1 
k = l  

i.e., that the sequence(1/n)E~,= l fk  converges to the mean value fx almost 
certainly (g-- a.c.), if fl does exist. 

Let us fix a random variable f on [s ~(f~), g] and a Borel subset X of 
the real line R. The relative frequency interpretation for g ( f - l ( X ) )  is 
provided by the Borel theorem as follows. Let X/-,~x) be the characteristic 
function of the random event f -  1(X) E ~(f~). X/-,~x) is a random variable 
on [f~,~(f~),ix], and its mean value Xr-'~x~ equals g ( f - l ( x ) ) .  We take 
now the product probability space [~, ~(~),/~] (Halmos, 1950) with~ = ~2 N, 
where N is the set of natural numbers, ~((~) is o-generated in 2 u in the 
standard way, and /2 is the product measure. The infinite sequences 
(to 1, to2 .... ) which constitute ~ represent long runs. The function X k: ~ ~ R, 
defined by Xk(to],to2 . . . . .  tok . . . .  )=1 if t o k E f - l ( X )  and 0 otherwise, are 
random variables on the product probability space, and the sequence 
XI, X2 . . . .  fulfills the conditions of Kolmogorov's theorem. Thus the se- 
quence (1/n)YY~ = iX k of relative frequency functions converges to Ix(f - I(X))  
almost certainly as n--, o0. This is the Borel law. 

It is well known that any random variable, say f, on [~2, ~(f~), g] 
defines a o-homomorphism f - l :  ~ ( R ) ~ ( s  of the Boolean o-algebra 
~(R)  of Borel subsets of the real line into the Boolean a-algebra ~(f~) of 
random events. Moreover almost all such o-homomorphisms are generated 
by random variables. Thus in classical probability theory one can consider 
reverse random variables [the o-homomorphisms of ~(R)  into ~(f~)] in- 
stead of random variables (real measurable functions on ~2). 

For arbitrary fixed random variablef on [f~, ~(f~), IX] and any X E ~ ( R )  
we can formulate the Borel theorem in a slightly different manner. We 
define g/-, :  ~ ( R ) ~  [0,1] (the unit interval) by g / - , ( Y ) = # ( f  - l ( y ) )  for any 
YE~(R) .  g/- ,  is a probability measure on [R,~(R)]. Let X x  be the 
characteristic function of X. X x  is a random variable on [R, ~(R),  #I-l], 
and its l mean value Xx equals / ~ F , ( X ) = g ( f -  (X)). We construct the 
product space JR, ~ (R) , / i / -q  in the same way as previously. Elements of R, 
i.e., sequences (xp x 2 .... ) of real numbers represent now results of long 
r u n s .  
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Functions Xk, defined by Xk(XpX2 ... . .  Xk, . . . )~l  if XkEX,  and 0 
otherwise, form a sequence of random variables on [R, 6~(R),/2y-,] which 
fulfill the assumptions of Kolmogorov's theorem. Hence the sequence 

1 n n , __. ( / ) Y ' k - l X k  of relative frequency functions converges to ~'lffi~x 
/~( f - I (X))  almost certainly as n~oo.  This version of the Borel theorem is 
much more capable of generalization than the previous one. 

The equivalence of the two versions of the Borel law should be 
understood as the commutativity of the following diagram: 

 (fi) h 

\ 
x ~ X ) ,  -1 

Eo,1] 

with h being a o-homomorphism, for any k =  1,2 . . . . .  The mapping h, 
defined by , - 1 - 1 h(x k (1))=Xk (1), h(X'k-I(O))fXkl(O) for all k, can be ex- 
tended to a o-homomorphism of ~(R)  into 6~(~). 

3. B O R E L  L A W  I N  G E N E R A L I Z E D  P R O B A B H J ' I N  T H E O R I E S  

Observe that our second version of the Borel theorem does not make 
use of specific structure of [~, ~(~),/~]. We could dispense with the set f~ of 
elementary events, and consider another (Onicescu, 1973) variant of the 
classical probability theory based on an abstract Boolean o-algebra 
together with a normal measure/~ on ~.  Moreover, we could go further and 
relax also the Boolean structure of the set of random events to obtain a 
far-reaching generalization of the classical probability theory. Indeed, it has 
been indicated by Mackey (Mackey, 1963) [see also papers on "quantum 
logic," e.g., Greechie and Gudder (1973), Jauch (1974), Beltrametti and 
Cassinelli (1976)] that an orthomodular o orthoadditive ortho-p.o.set (o- 
ortho-p.o.set for short) can do the job of ~(f~). This is one way to obtain a 
nonclassical ("noncommutative") probability theory. 

Thus let ~ be a o-ortho-p.o.set with the greatest element e, and a ~ - a ,  
the orthoeomplementation. Probability measure on ~ is a o-additive func- 
tion/~: ~ [ 0 ,  1] such that # ( e ) =  1. A random variable A (it corresponds to 
the "classical" reverse random variable) is an g-valued measure, i.e., a 
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mapping of ~(R)  into E such that A(R)=e,  if X l fqX 2 = ~ then A(X])~ < 
- A ( X 2 )  for any X~, X 2 ER,  and A ( X  1 tAXz. . . )=A(X1)+A(X2)+ . . .  for 
any X], X2, ... E ~ ( R )  with X~ AXj = ~ ,  i~j .  A pair [E, #] plays the role of 
(generalized) probability space and, as previously, any random variable A 
generates a measure/~A on JR, ~(R)]. The probability space [R, ~3(R),/ZA] 
obtained in this manner is classical, and we can repeat the construction 
leading to the Borel theorem without any changes. Thus we obtain I~(A(X)) 
as an a.c. limit of a sequence of relative frequency functions. This is a 
general ("nonclassical") version of the Borel theorem. 

The probability theory based on a o-ortho-p.o.set is so general that it 
covers also the case of standard quantum theory. For this case E is identified 
as the complete ortholattice ~ ( ~ )  of all closed subspaces of a Hilbert space 
~ ,  probability measures on E ( ~ )  are represented by statistical operators 
(the Gleason theorem), and random variables (s measures on 
JR, ~(R)]) are just spectral decompositions of quantum "observables." Our 
remarks above apply without any changes to this case. [A similar idea has 
been reported by Ochs (1980); see also Lahti and Talja (1980).] 

In the traditional language of quantum mechanics the general version 
of the Borel theorem goes as follows: A is a fixed "observable" (a self-adjoint 
operator densely defined on a separable Hilbert space %) representing a 
measurable physical quantity, and the real l ine R contains the set of all 
possible values (the set of all possible results of single measurements) of the 
quantity (the spectrum of A). The (generalized) probability measure /~ 
corresponds to a physical state (a preparation procedure), whereas/~A is the 
probability measure on R resulting from a long sequence of single measure- 
ments of A. The product space R = R N contains all results of such sequences 
of single measurements. Accordingly to the (generalized) Borel theorem the 
relative frequency functions (1/n)E~=lX'k converge almost certainly to 
Xx =Tr(p,  Pa, x), where p~ is the statistical operator corresponding to/~ and 
PA, x is the projection operator related to the Borel set XC R  via the spectral 
decomposition of A. This is a formal demonstration of the correctness of a 
fact that is obvious to any experimental physicist, namely, that quantum 
probabilities can be approximated by relative frequencies. On the other 
hand this does not mean that probabilities are relative frequencies [cf. the 
clear analysis in van Fraassen, (1977)], and does not exclude the propensity 
interpretation having some advantages for quantum probabilities (cf. Popper, 
1967; Lahti and Talja, 1980). 

The first version of the Borel law cannot be formulated for the general 
probability theory based on a o-ortho-p.o.set E as there is no way to 
construct a product of ~'s generalizing ~(~) .  In the special case of standard 
quantum mechanics, however, the a-ortho-p.o.set E ( ~ )  of closed subspaces 
of the von Neumann tensor product ~ of countable infinite number of ~ 's 
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(von Neumann, 1938) is a legitimate counterpart of ~(~) .  The product 
measure/2 is here represented by the infinite tensor product p# = O~| p~| �9 - �9 
of statistical operators p~ corresponding to a probability measure /~ on 
~ ( ~ ) .  The striking analogy of E ( ~ )  to ~ ( ~ )  suggests a formulation of the 
first version of the Borel law in terms of ~ ( ~ )  and pa. This has been done 
by Finkelstein (Finkelstein, 1965) and rediscovered by Hartle (Hartle, 1968) 
(see also Davidon, 1976; d'Espagnat, 1976; Ochs, 1977). 

The remarkable Finkelstein translation of the Borel law into the 
Hilbert space language could be formulated as follows: Let A be a fixed 
quantum observable on a Hilbertian "probability space" [~ ,  E(%),/x], and 
let XE~(R) .  The projection operator PA, x related to X by the spectral 
measure of A corresponds to f~-l(X)^in classical Borel law. We take the 
"product probability space" [~ ,  E(~),/2] and define projection oper- 
ators Pk on ~ by Pk =E|174 ...| x|174 . . . ,  where E is the identity 
operator on ~ and PA, X occupies the kth position. 

Now it can be proved that the sequence (1/n)~7,= lPk converges/2--a.c. 
to [Tr(p~Pa, x)]f  ( I  is the identity operator on ~ in the usual sense of 
convergences of spectral measures (Ochs, 1977). This is the Borel-Finkelstein 
law. 

Our variant of Borel law for quantum mechanics is connected to the 
above result in the same way as the second version of the classical Borel law 
is related to the first one. The diagram 

o (R) 

1 

h 

[0,1] 

is commutative for all k, with a o-homomorphism h generated via the 
Varadarajan theorem (Varadarajan, 1962, Theorem 3.4) by the mapping 
h(x~-1(1)) =Pk, h(x~- I(0)) = P ~  (the ortho-complement of Pk). 
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